
The 1990s Called. They Want Their
Code Back.
5 Ways Your Code is Stuck in the 90s

3 Mar 2015

Jonathan Oliver

$ whoami

@jonathan_oliver
http://jonathanoliver.com
http://github.com/joliver
http://keybase.com/joliver
Distributed Podcast
Chief SmartyPants, SmartyStreets

Overview

Disclaimers

Why Go Exists

#1 Implicit messaging

#2 Complex Threading

#3 RPC Everywhere

#4 GC

#5 Logging

Conclusion

Caveats: But, but, but...

Your mileage may vary

Don't apply blindly or wholesale

Sharp knife

Our experience

C# on Windows vs Go on Linux (512 req/s)

hdrhistogram.org

C# Windows vs Golang Linux at 4096 req/s

hdrhistogram.org

C# Windows vs Golang Linux at 8192 req/s

hdrhistogram.org

Why Go Exists

(The real reason)

Compile times?

Multi-core, networked systems

1990ism #1: Implicit Messaging

Hint Dropping Fallacy

If you have to ask, it doesn't mean as much

If you really loved me, you'd know

Implicit Messaging: PHP

<?php
 $sql = 'UPDATE Users SET ' +
 'firstname = ' $_GET['firstname'] + ','+
 'lastname = ' $_GET['lastname'] + ','+
 'phone = ' $_GET['phone'] + ','+
 'password = ' hash($_GET['password']) + ','+
 'WHERE id=' + $_GET['id'];
 mysql_query($sql, $connection) or die("Couldn't execute query.");
?>

Implicit Messaging: Go

Where does HTTP stop and the application start?

func implicit(response http.ResponseWriter, request *http.Request) {
 query := request.URL.Query()

 statement := `UPDATE Users
 SET firstname = '%s',
 lastname = '%s',
 phone = '%s',
 password='%s'
 WHERE id = %s;`

 sql.Execute(statement,
 query.Get("firstname"),
 query.Get("lastname"),
 query.Get("phone"),
 hashAndSalt(query.Get("password")),
 query.Get("id"))

 response.WriteHeader(200)
}

Implicit Messaging: Boundaries

HTTP bleeds all over the application

.NET: System.Web.HttpContext.Current.Request...

Implicit Messaging: Intention?

I know! I'll use a DTO that corresponds to my table!

Hello, Ruby on Rails / Active Record

type User struct {
 ID int
 FirstName string
 LastName string
 Phone string
 Password []byte
}

Staring at the table salt: implicit or inferred understanding

type User struct {
 ID int
 FirstName string
 LastName string
 Phone string
 Password []byte
}

Solution #1: Explicit Contracts

Application Protocols 101:

HTTP: Hypertext Transfer Protocol

SMTP: Simple Mail Transfer Protocol

FTP: File Transfer Protocol (control channel, port 21)

Transfering what?

Messages!

Review HTTP, SMTP, etc. RFC specifications

e.g. HTTP message body, HTTP message headers, etc.

HTTP, SMTP, etc. encapsulate a message

DTOs: What Are Your Intentions?

Implicit / Inferred (Active Record)

type User struct {
 ID int
 FirstName string
 LastName string
 Phone string
 Password []byte
}

Explicit

type ChangePasswordCommand struct {
 UserID int
 NewPassword string
 NewPasswordConfirmed string
 OldPassword string
}

Messaging How-To

HTTP values into message struct

URL+VERB determines message type

Query String

Form Values

Deserialize body or HTTP 400

Messaging How-To (continued)

HTTP is an interface to application

Push message into application layer

Additional interfaces, e.g. SMTP, AMQP, CLI, etc.

1990ism #2: Complex Threading Code

Goroutine per HTTP request

Terrible for shared state like:

Incrementing a counter

Modify a map

Updating object references

Goroutine per request = manual synchronization of shared state

Go doesn't save us from synchronization code

go keyword can make things harder

package main

import "fmt"
import "time"

func main() {
 for i := 0; i < 4; i++ {
 go func() {
 fmt.Println(i) // bad closure
 }()
 }
 time.Sleep(time.Millisecond)
}

Solution #2: In-process "microservices" (Actors)

Actor Example:

// uncontended state

func listen() {
 for message := this.incomingChannel {

 // single-threaded with synchronization primitives
 counter++
 map[message.UserID]++

 // additional message processing code

 this.outgoingChannel <- message
 }
}

The Unix Way: Small & Composable

Message In, Message Out: Easy Testing

Pipes and Filters

Marshal to external process

Break Apart Stateful and Stateless Operations

func (this CounterPhase) listen() {
 for message := this.incomingChannel {
 counter++ // stateful; single-threaded with no sync code
 message.Sequence = counter
 this.outgoingChannel <- message // outgoing to process phase
 }
}
func (this ProcessPhase) listen() {
 // can be stateless because state was assigned in previous phase

 for i := 0; i < runtime.NumCPU(); i++ {
 go func() {
 for message := this.incomingChannel { // incoming from counter phase
 // process message (CPU/network operations)
 this.outgoingChannel <- message
 }
 }()
 }
}

HTTP RPC

Block the caller until the work is done

func handle(w http.ResponseWriter, r *http.Request) {
 var wg sync.WaitGroup
 wg.Add(1)

 query := r.URL.Query()
 this.application <- ChangePasswordCommand{
 UserID: cookie.Get("user-id"),
 OldPassword: query.Get("old-password"),
 NewPassword: query.Get("new-password"),
 NewPasswordConfirmed: query.Get("new-password-confirmed"),
 WaitGroup: &wg,
 }

 wg.Wait()

 // return result of application
}

Queues and Natural Backpressure

Typical performance characteristics at 90% vs 99% utilization

1990ism #3: Remote Procedure Call Everywhere

Fallacies of Distributed Computing

The Network is Reliable

Latency is Zero

Typical Application Behavior (Transaction Script)

Opens a DB connection

Start a transaction

Execute DB operation(s)

Other operations? (Send email, etc.)

Commit transaction

Wash, rinse, repeat

What could possibly go wrong?

Fragile RPC

Per business demands, we add "one more thing", e.g. email, etc.

When network is down, lots of things break

Bill credit card, send email, etc.

Netflix architecture

Solution #3: Actors (again) + Embrace Failure

Simple Retry Code

import "time"

func listen() {
 // simple retry
 for message := range this.incoming {
 for attempt := 0; attempt < 5; attempt++ {
 if err := emailReceipt(message); err != nil {
 time.Sleep(time.Second * 30)
 continue
 }
 }
 }
}

BONUS POINTS: Simple Batching

Story: Moving one box at a time

func listen() {
 for message := range this.incoming {
 addToUnitOfWork(message)
 if len(this.incoming) == 0 || len(batch) >= 100 {
 commit()
 newTransaction()
 }
 }
}

1-2 order of magnitude performance increase

1990ism #4: Abuse Garbage Collection

Primitive, mark-and-sweep implementation

But getting better...

Java and .NET

pointers

maps

strings

slices

GC Pause Latency and You

Are 500 ms GC pauses okay?

How about 5 seconds?

What is latency costing you?

Solution #4: Understanding GC Behavior

Measure, measure, measure

Avoid pointers (where possible)

Preallocate and re-use structures (where possible)

My bug report (issue #9477) & maps of structs (v1.5)

Keep byte slices off heap (where possible)

Size of the heap

1990ism #5: Logging Is Sufficient

Logging is awesome, but very "trees" focused

Stored?

Where?

How long?

Who analyzes and when?

Calls to log.Print result in blocking syscalls that yield the goroutine

Hard to make blocking/yielding calls

Solution #5: Metrics, Metrics, Everywhere

Business Value (Coda Hale: Metrics, Metrics, Everywhere)

Business value is anything which makes people more likely to give us money

We want to generate more business value

Our code generates business value when it runs—NOT when we write it.

We need to make better decisions about our code

We need to know what our code does when it runs

We can’t do this unless we MEASURE it

Our mental model of our code is not our code.

Example: This code can’t possibly work; it works.

Example: This code can’t fail; it fails

Example: Do these changes make things faster?

We can’t know until we MEASURE it

We improve our mental model by measuring what our code DOES

A better mental model makes us better at deciding what to do—at generating business
value

Understanding Your Application

Instrument your application (metrics)

Understand how it's being used

Understand the pathways that are taken (counters)

Understand how much (disk/memory/etc) you have left (gauges)

Service Providers

Librato (http://github.com/smartystreets/metrics)

Boundary

Datadog

Key Takeaways

Go != other languages

Work with concurrency primitives

Explicit messages

Message pipelines ("actors")

Simple logic, simple code

Thank you

3 Mar 2015

Jonathan Oliver
@jonathan_oliver (http://twitter.com/jonathan_oliver)

http://jonathanoliver.com (http://jonathanoliver.com)

http://github.com/joliver (http://github.com/joliver)

http://keybase.com/joliver (http://keybase.com/joliver)

Distributed Podcast
Chief SmartyPants, SmartyStreets

http://twitter.com/jonathan_oliver
http://jonathanoliver.com/
http://github.com/joliver
http://keybase.com/joliver

